当前位置: 首页 > 师资力量 > 教师详情页

侯岁稳

个人简历

科研成果

教学情况

研究方向

荣誉奖励

论文专著

其他信息

个人简历

基本信息

职称:教授

办公室地址:逸夫生物楼508

邮箱:housw@lzu.edu.cn

学习经历


1986.9-1990.6  甘肃省成县师范学校(现陇南师专),中专

1990.9-1994.6  西北师范大学生物系,学士

1994.9-1997.8  中科院昆明植物研究所,硕士,导师陈宗莲研究员

1999.9-2004.5  兰州大学生命科学学院,细胞生物学博士学位,导师贾敬芬教授

2002.1-2003.1  英国剑桥大学植物科学系,访问学者,导师 Alex Webb 教授

2005.3-2008.2  中科院近代物理研究所,博士后,合作导师李文建研究员

1986.9-1990.6  Normal School of Chengxian, Gansu Province

1990.9-1994.6  B.S., College of Life Sciences, Northwest Normal University

1994.9-1997.8  M.S., Kunming Institute of Botany, Chinese Academy of Sciences,Supervisor Professor Zonglian Chen

1999.9-2004.5  Ph.D., School of Life Sciences, Lanzhou University, Supervisor Professor Jingfen Jia

2002.1-2003.1  Visiting scholar, Plant Sciences Department, Cambridge University, Supervisor Professor Alex Webb

2005.3-2008.2  Postdoctor, Institute of Modern Physics, Chinese Academy of Sciences, Cooperation Supervisor Researcher Wenjian Li


工作经历


1997.8-2000.5   兰州大学生命科学学院助教

2000.6-2004.5   兰州大学生命科学学院讲师

2004.6-2009.5   兰州大学生命科学学院副教授,硕士研究生导师

2009.6-现在     兰州大学生命科学学院教授,博士研究生导师

1997.8-2000.5    Teaching assistant, School of Life Sciences, Lanzhou University, China

2000.6-2004.5    Lecturer, School of Life Sciences, Lanzhou University, China

2004.6-2009.5    Associate professor, School of Life Sciences, Lanzhou University, China

2009.6-Present   Professor, School of Life Sciences, Lanzhou University, China


社会工作

甘肃省细胞生物学学会首任理事长,中国细胞生物学学会理事,中国植物学会外事委员会委员、植物细胞生物学专业委员会委员,中国细胞生物学会植物器官发生分委员会委员、细胞生物学教学与普及工作委员会委员,中国植物生理与分子生物学学会植物激素生物学专业委员会委员,甘肃省基因编辑育种重点实验室主任,细胞活动与逆境适应教育部重点实验室副主任,甘肃省基因编辑育种产业研究院院长,兰州大学学术委员会自然学科分委员会委员、学位委员会委员,生命科学学院院长,陇南师专校友会副会长等;《植物学报》、《中国细胞生物学学报》、《西北植物学报》编委

科研成果

主持9项国家自然科学基金,1项甘肃省科技重大专项,参加2项科技部“973”计划项目、4项农业部转基因专项,主持3项省基金项目等,部分项目:

1、甘肃省科技重大专项,22ZD6NA049,玉米基因编辑育种,2023/01-2025/12,主持

2、国家自然科学基金面上项目,32170340,I 型蛋白磷酸酶调控植物细胞自噬的分子机制,2022/01-2025/12,主持

3、农业部重大专项,2016ZX08009003-002,抗逆和抗除草剂关键基因克隆及功能验证,2016/01-2020/12,参加/主持

4、国家自然科学基金面上项目,31870251,拟南芥PP1新调节亚基PP1R3调控ABA信号的分子机理,2019/01-2022/12,主持

5、国家自然科学基金面上项目,31670185,水稻F-box蛋白SFC通过泛素化降解途径调控气孔图式发育,2017/01-2020/12,主持

6、国家自然科学基金面上项目,31470372,TOPP4与WAT1相互作用调控赤霉素和生长素信号通路互作,2015/01-2018/12,主持

7、国家自然科学基金面上项目,31271460,TIR-NB-LRR蛋白调控乙烯合成和细胞扩展的分子机理,2013/01-2016/12,主持

8、国家自然科学基金重大研究计划培育项目,91017002,拟南芥蛋白磷酸酶1调控赤霉素和生长素信号转导机理,2011/01-2013/12,主持

9、国家自然科学基金面上项目,31070247,一个新的拟南芥PP1磷酸酶(PIPE)调节赤霉素信号转导通路的研究,2011/01-2013/12,主持

10、国家自然科学基金面上项目,30670124,拟南芥气孔发育图式基因筛选与鉴定研究,2007/01-2009/12,主持

11、国家自然科学基金青年科学基金项目,30300029,用增强子诱捕法克隆与分析拟南芥保卫细胞的功能基因,2004/01-2006/12,主持

12、科技部“973 计划”项目,2011CB915401,高等植物蛋白的重要修饰过程与调控机制,谢旗教授主持,2011/01-2015/12,参加

13、科技部“973 计划”项目,2009CB941501,植物器官特征决定的遗传和表观遗传调控网络,曹晓风院士主持,2009/01-2013/12,参加

教学情况

长期主讲本科生主干基础课《细胞生物学》课程,研究生《植物细胞信号转导专题》、《博士生前沿进展讲座——细胞生物学专业》等课程,曾讲授研究生《细胞信号转导进展》和《专业英语》、本科生《细胞信号转导》和《细胞生物学实验》。已经毕业并获得博士学位研究生16位、硕士学位研究生63位,指导80余名本科生毕业论文。指导的1位博士生获得甘肃省第二届优秀博士学位论文奖(秦倩倩)、2位博士生获得兰州大学优秀博士学位论文奖(陈亮、吴中亮)。毕业研究生去向有国外著名大学教师、博士后、博士生,国内重要大学、科研、教学以及企业等单位的研究人员。

研究生主要招生方向植物细胞信号转导、细胞发育与育种。

热忱欢迎有志于细胞科学、育种研究的学子、博士后和青年学者加盟!

研究方向

1、植物 I 型蛋白磷酸酶(TOPP/PP1)的功能。通过遗传学、细胞生物学、分子生物学方法,发现植物蛋白磷酸酶 TOPP 调控赤霉素信号转导、生长素极性运输、光信号通路、免疫反应、细胞自噬,以及ABA信号及非生物胁迫反应等关键过程。TOPP通过对GA信号通路抑制蛋白DELLA去磷酸化修饰,促进其降解,正调控赤霉素信号通路(Qin et al., 2014, PLoS Genetics);证明TOPP可以对生长素运输蛋白PIN1去磷酸化,调控生长素在表皮细胞内外的极性分布,控制扁平细胞的形态建成(Guo et al., 2015, Plant Physiology);发现TOPP与phyB在红光下对PIF5进行磷酸化修饰,调节PIF5的降解,参与了植物的光形态建成(Yue et al., 2016, Plant Physiology);发现蛋白磷酸酶TOPPs参与植物免疫途径(Liu et al., 2019, JIPB,该途径中TOPPs被抗病蛋白SUT1所监护(Yan et al., 2019, The Plant Journal);揭示了TOPPs的调节亚基PP1R3与其共同组成的全酶与ABI1在细胞核内平行发挥调节ABA信号的作用,为研究TOPP介导的蛋白磷酸化在植物胁迫反应中的作用提供了新途径Zhang et al., 2020, Plant Physiology;发现TOPP通过ATG13a的去磷酸化修饰,调控ATG1-ATG13激酶复合体的活性,起始植物细胞自噬Wang et al., 2022, The Plant Cell)。

2、气孔发育的分子机理。利用遗传学、细胞分子生物学等研究双子叶植物拟南芥、单子叶植物水稻气孔发育的信号转导机制。发现植物甾醇早期合成途径调控气孔系细胞的命运维持和决定,参与调控气孔的图式发育(Qian et al., 2013, The Plant Journal;发现RNA聚合酶II(Pol II)的亚基NRPB3通过与FAMA和ICE1直接作用,扮演了气孔图式发育过程中转录因子信号接受器的角色,这一策略与肌肉细胞的发育机理类似(Chen et al., 2016, Development);发现Pol II结合蛋白RIMA-QQT1-IYO复合体能够和气孔发育转录因子SPCH, MUTE, FAMASCRM等直接互作,调控气孔系细胞命运的转换,为Pol II结合蛋白参与真核生物细胞和组织分化提供了新机制Chen et al., 2021, New Phytologist);鉴定了调控水稻气孔发育的多种转录因子,首次发现OsSCR和OsSHR控制水稻气孔系的起始和发育,且OsSCR 基因的转录受 OsSPCH 与 OsMUTE的激活(Wu et al., 2019, New Phytologist),这一重要发现引发了国际上对禾本科植物气孔发育机理的高度关注,包括The Plant JournalNew PhytologistFrontiers in Plant Science 等在内的国际知名期刊2020年接连发表多篇综述论文对其引用、讨论和展望;发现FLP-SCRM调控了拟分生组织细胞到气孔母细胞的分化过程Li et al., 2023, The Plant Journal目前主要研究玉米、水稻等禾本科作物的气孔发育遗传调控网络。

3、作物基因编辑育种利用基因编辑等生物技术培育高产、抗逆的玉米、水稻新品种。


1. The functions of type one protein phosphatase (TOPP/PP1) in plants. Using genetic and molecular biology approaches, our research group illustrated that plant protein phosphatase TOPP regulates gibberellin signal transduction, auxin polar transport, light signaling pathway, defense response, autophagy, and ABA response in plant. TOPP dephosphorylates DELLA, a key GA signaling pathway inhibitor, and promotes its degradation, positively regulating GA signaling pathway (Qin et al., 2014, PLoS Genetics). TOPP also dephosphorylates PIN1, and regulates its polar distribution in the pavement cell, controlling pavement cell morphogenesis (Guo et al., 2015, Plant Physiology). At the same time, TOPP dephosphotylates PIF5, and promotes its degradation during plant photomorphogenesis (Yue et al., 2016, Plant Physiology). TOPP is essential for plant immunity and is guarded by resistance protein SUT1 in plant (Liu et al., 2019, JIPB; Yan et al., 2019, The Plant Journal). Recently, we demonstrate PP1R3, a regulatory subunit of TOPPs, is involved in plant response to abscisic acid and abiotic stress in Arabidopsis (Zhang et al., 2020, Plant Physiology). We find that TOPP regulates the activity of ATG1-ATG13 kinase complex through the phosphorylation state of ATG13a and initiates autophagy in plant cells (Wang et al., 2022, The Plant Cell).

2. The molecular mechanisms of stomata development. Through forward and reverse genetic approaches, we cloned several genes controlling epidermal cell morphogenesis and stomotal patterning in Arabidopsis and rice. For example, early sterol synthesis pathway is required for cell fate commitment and maintenance in stomatal lineage (Qian et al., 2013, The Plant Journal). NRPB3 and NRPB2, the subunits of RNA polymerase II, are essential for stomatal patterning and differentiation. NRPB3 receives signals from transcription factors during stomatal patterning development by directly interacting with FAMA and ICE1. This mechanism is similar to that in muscle cell differentiation (Chen et al., 2016, Development). RNA polymerase II (Pol II) associated proteins (RPAPs) RIMA-QQT1-IYO complex could work together with key stomatal transcription factors, SPEECHLESS, MUTE, FAMA and SCREAM, to drive cell fate transitions in the stomatal cell lineage, providing a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes (Chen et al., 2021, New Phytologist). Interestingly, we found OsSCR and OsSHR control the initiation of stomatal cell lineage and fomation of subsidiary cell in rice (Wu et al., 2019, New Phytologist). This important discovery attracts the eyes of researchers in stomata development of grasses. Several review papers cited these important findings and intensively dicussed them in the well-known journals including Plant Journal, New Phytologist, and Frontiers in Plant Science in 2020. We also demonstrate FLP plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis (Li et al., 2023, The Plant Journal). Our current research focuses on the genetic regulation network of stomatal development in maize, rice and other gramineous crops.

3. Crop gene editing breeding. Gene editing and other biotechnologies are used to breed new varieties of maize and rice with high yield and stress resistance.

荣誉奖项

1、教育部“长江学者奖励计划”特聘教授(2017年)

2、国务院政府特殊津贴(2016年)

3、甘肃省领军人才(第一层次)(2019年)

4、科学中国人(2018)年度人物

5、甘肃省优秀博士学位论文指导教师(2015年)

6、教育部新世纪优秀人才支持计划(2006年)

7、甘肃省自然科学二等奖(2008年)

8、陕西省科学技术奖二等奖(2006年)

论文专著

主要发表的论文(*通讯作者):

Li P, Chen L, Gu X, Zhao M,  Wang W, Hou S*. 2023. FOUR LIPS plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis. The Plant Journal, DOI: 10.1111/tpj.16146

Wang Q, Qin Q, Su M, Li N, Zhang J, Liu Y, Yan L, Hou S*. 2022. Type one protein phosphatase regulates fixed-carbon  starvation-induced autophagy in Arabidopsis. The Plant Cell, 34, 4531-4553

Sawaira J, Qin Q, Shi W, Yan L, Hou S*. 2022. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3  participate actively in growth and adaptive responses under abscisic acid. Frontiers in Plant Science, 13, 990575

Chen L, Zhao M, Wu Zh, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S*. 2021.  RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal  transcription  factors in Arabidopsis thaliana. New Phytologist, 230: 171-189. With a commentary “Dissecting the developmental roles of  Poll II-associated proteins through the stomatal pores” by Zhou & Lau in New Phytologist, 230: 11-13

Yu Q, Chen L, Zhou W, An Y, Luo T,  Wu Zh, Wang Y, Xi Y, Yan L, Hou S*. 2020. RSD1 is essential for stomatal patterning and files in rice. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.600021

Zhang J, Qin Q, Nan X, Guo Z, Liu Y, Jadoon S, Chen Y, Zhao L, Yan L, Hou S*. 2020. Role of Protein Phosphatase 1 Regulatory Subunit 3 (PP1R3) in mediating abscisic acid response. Plant Physiology, 184: 1317-1332

Chen L, Wu Z, Hou S*. 2020. SPEECHLESS speaks loudly in stomatal development. Frontiers in Plant Science, 11:114. doi: 10.3389/fpls.2020.00114

Yan J, Liu Y, Huang X, Li L, Hu ZH, Zhang J, Qin Q, Yan L, He K, Wang Y, Hou S*. 2019. An unreported NB-LRR protein SUT1 is required for the autoimmune response mediated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis. The Plant Journal, 100: 357-373

Liu Y, Yan J, Qin Q, Zhang J, Chen Y, Zhao L, He K, Hou S*. 2019. Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. Journal of Integrative Plant Biology, doi: 10.1111/jipb.12845

Li H, Cai Z, Wang X, Li M, Cui N, He K, Yi J, Tax FE, Hou S, Li J, Gou X*. 2019. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Molecular Plant, 12: 984-1002

Wu ZL, Chen L, Yu Q, Zhou WQ, Gou XP, Li J, Hou SW*. 2019. Multiple transcriptional factors control stomata development in rice. New Phytologist, 223: 220-232. This article was rated as highly cited paper in 2020.

Cui Y, Hu C, Zhu Y, Cheng K, Li X, Wei Z, Xue L, Lin F, Shi H, Yi J, Hou S, He K, Li J, Gou X*. 2018. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis. Plant Cell, 30: 2383-2401

Hu C, Zhu Y, Cui Y, Cheng K, Liang W, Wei Z, Zhu M, Yin H, Zeng Li, Xiao Y, Lv M, Yi J, Hou S, He K, Li J, Gou X*. 2018. A group of receptor kinases are essential for CLAVATA signaling to maintain stem cell homeostasis. Nature Plants, 4: 205-211

Zheng H, Zhang F, Wang SL, Su YH, Ji XR , Jiang PF, Chen RH, Hou SW, and Ding Y*. 2018. MLK1 and MLK2 coordinate RGA and CCA1 activity to regulate hypocotyl elongation in Arabidopsis thaliana. Plant Cell, 30: 67-82

Huang BY, Qian PP, Gao N, Shen J, Hou SW*. 2017. Fackel interacts with gibberellic acid signaling and vernalization to mediate flowering in Arabidopsis. Planta, 245(5): 939-950

Zhou WQ, Wang YC,  Wu ZL, Luo L, Liu P, Yan LF, Hou SW*. 2016. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice. Journal of Experimental Botany, 67(14): 4311-4323

Chen L, Guan LP, Qian PP, Xu F, Wu ZL, Wu YJ, He K, Gou XP, Li J, Hou SW*. 2016. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis. Development, 143: 1600-1611

Yue J, Qin QQ, Meng SY, Jin HT, Gou XP, Li J, Hou SW*. 2016. TOPP4 regulates the stability of Phytochrome Interacting Factor 5 during photomorphogenesis in Arabidopsis. Plant Physiology, 170(3): 1381-1397

Wu Y, Xun Q, Guo Y, Zhang J, Cheng K, Shi T, He K, Hou S, Gou X, Li J*. 2016. Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Molecular Plant, 9(2): 289-300

Guo XL, Qin QQ, Yan J, Niu YL, Huang BY, Guan LP, Li Y, Ren DT, Li J, Hou SW*. 2015. TYPE-ONE PROTEIN PHOSPHATASE4 regulates pavement cell interdigitation by modulating PIN-FORMED1 polarity and trafficking in Arabidopsis. Plant Physiology, 167: 1058–1075

Han B, Chen L, Wang J, Wu ZL, Yan LF, Hou SW*. 2015. Constitutive Expresser of Pathogenesis Related Protein 1 is required for pavement cell morphogenesis in Arabidopsis. PLoS One,  DOI:10.1371/journal.pone.0133249, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133249.

Yang JX, Yan LF, Song YJ, Chai CC, Song LL, Guan LP, Hou SW*. 2015. New roles for the Arabidopsis TAO1 gene besides disease resistance. Russ J Plant Physl, 62: 542–550

Zhou WQ, Wu ZL, Zhang YC, Wu DL, Liu D, Wang YC, Gao QX, Dang BR, Li WJ, Hou SW*. 2015. Stable inheritance of excellent agricultural traits induced by 12C6+ heavy-ions in lentil (Lens culinaris Medik.). Czech J. Genet. Plant Breed, 51, 29–35

Wang W, Zhang J, Qin QQ, Yue J, Huang BY, Xu XF, Yan LF, Hou SW*. 2014. The six conserved serine/threonine sites of REPRESSOR OF ga1-3 protein 1 are important for its functionality and stability in gibberellin signaling in Arabidopsis. Planta, 240: 763779

Qin QQ, Wang W, Guo XL, Yue J, Huang Y, Xu XF, Li J, Hou SW*. 2014. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4. PLoS Genetics, 10(7): e1004464. doi:10.1371/journal.pgen.1004464. http://www.plosgenetics.org/doi/pgen.1004464

Yan LF, Cheng X, Jia RL, Qin QQ, Guan LP, Du H, Hou SW*. 2014. New phenotypic characteristics of three tmm alleles in Arabidopsis thaliana. Plant Cell Reports, 33: 719–731

Hu ZH,  Xu F, Guan LP,  Qian PP,  Liu YQ, Zhang HF, Huang Y, Hou SW*. 2014. The tetratricopeptide repeat-containing protein Slow Green1 is required for chloroplast development in Arabidopsis. Journal of Experimental Botany, 65: 1111–1123

Qian PP, Han B, Forestier E, Hu ZH, Gao N, Lu WW, Schaller H, Li J, Hou SW*. 2013. Sterols are required for cell fate commitment and maintenance of the stomatal lineage in Arabidopsis. The Plant Journal, 74: 1029–1044

Guo XL, Lu WW, Ma YR, Qin QQ, Hou SW*. 2013. The BIG gene is required for auxin-mediated organ growth in Arabidopsis. Planta, 237: 1135-1147

Luo L, Zhou WQ, Liu P, Li CX, Hou SW*. 2012. The development of stomata and other epidermal cells on the rice leaves. Biologia Plantarum, 56(3): 521-527

Qian PP, Hou SW*, Guo GQ. 2009. Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Reports, 28: 1147-1157

Wu DL, Hou SW*, Qian PP, Sun LD, Zhang YC, Li WJ. 2009. Flower color chimera and abnormal leaf mutants induced by 12C6+ heavy ions in Salvia splendens Ker- Gawl. Scientia Horticulturae, 121: 462-467

Sun LD, Hou SW*, Wu DL, Zhang YC. 2008. Rapid clonal propagation of Zygophyllum xanthoxylon (Bunge) Maxim., an endangered desert forage species. In Vitro Cellular Development Biology - Plant. 44: 396-400

Dodd AN, Jakobsen MK, Baker AJ, Tezerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AR. 2006. Time of day modulates low-temperature Ca2+ signals in Arabidopsis. The Plant Journal, 48:962-973

He WT, Hou SW*, Wang CY. 2006. Callus induction and high-frequency plant regeneration from hypocotyl and cotyledon explants of Arctium lappa L. In Vitro Cellular and Development Biology-Plant, 42(5): 411-414

He WT, Hou SW*, Wang CY. 2006. An efficient in vitro method for mass propagation of Potentilla potaninii Wolf. In Vitro Cellular and Development Biology-Plant, 42(5): 415-417

Hou SW*, Jia JF. 2005. In vitro regeneration of Perilla frutescens from hypocotyl and cotyledon explants. Biologia Plantarum, 49: 129-132

Hou SW*, Jia JF. 2004. High frequency regeneration from Astragalus melilotoides hypocotyl and stem explants via somatic embryogenesis and organogenesis. Plant Cell Tissue and Organ Culture, 79: 95-100

Hou SW*, Jia JF. 2004. Plant regeneration from protoplasts isolated from embryogenic calli of the forage legume Astragalus melilotoides Pall. Plant Cell Reports, 22: 741-46


编著教材:

细胞生物学实验(第4版),主编:王崇英,侯岁稳,高欢欢。高等教育出版社,2017。

其他信息

欢迎保送或报考研究生!

联系方式:甘肃省兰州市天水南路222号,兰州大学生命科学学院,730000,侯岁稳 教授

housw@lzu.edu.cn

最新更新时间: 2022-11-22